

Comparison of Total Ionizing Doses from Representative Space Radiation Shielding Analysis Tools

Bongim Jun*, Luz Maria Martinez Sierra, Brian X. Zhu, and Insoo Jun

Outline

- Motivation
- Introduction to Transport Tools Evaluated in This Study
- NOVICE Validation Against MCNP
 - Why do you believe that NOVICE is "conservative"
 - Verification that NOVICE is being used properly
- FASTRAD Validation Against NOVICE
 - Shielding Geometries and Mission Environment
 - Simple Geometry (Shell and Box)
 - Cylindrical Vault Geometry
 - Complex Geometries
- Geant4 Validation Against MCNP
 - Forward Monte Carlo Results from Geant4, FASTRAD, and MCNP
- Conclusion

Motivation

- Space radiation is a key design consideration for any space mission
- Spacecraft should be designed to survive exposure to expected radiation environment for a mission
- Multiple commercial tools are available to predict ionizing and displacement damage doses, but they often produce differing results beyond stated errors
- Good understanding of dose predictability of transport tools is critical for shielding design optimization

Introduction to Transport Codes

FASTRAD

- Purpose: system-level TID calculations and shielding analysis for parts/materials
- Method: Ray tracing (Input requirement: Dose Depth curves from e.g. Shieldose, NOVICE)
- CAD input: STEP, IGES, GDML format
- Run Time: Quick running time (minutes to hours)

NOVICE

- Purpose: system-level TID calculations and shielding analysis for parts/materials
- Method: Adjoint Monte Carlo method (reverse Monte Carlo, RMC)
- CAD input: VRML format
- Run Time: Moderate running time (hours to days)

Geant4

- Purpose: detailed treatment of particle interaction physics for part/material/detector response simulation.
- Method: Forward Monte Carlo (FMC) particle transport with accurate physics and data bases for nuclear interactions
- CAD input: CSG, GDML format
- Run Time: Moderate running time (hours to days)

MCNPX

- Purpose: detailed treatment of particle interaction physics for part/material/detector response simulation.
- Method: Forward Monte
 Carlo particle transport with
 accurate physics and data
 bases for nuclear interactions
- CAD input: No direct transport format available. Not for S/C level analysis
- Run Time: Long running time (days)

LONGER Running Time

NOVICE Validation: [1/2]

California Institute of Technolog

Is MCNP Acceptable?

MCNP Analysis:

- Forward Monte Carlo particle transport with accurate physics and data bases for nuclear interactions
- MCNP's dose predictability has been demonstrated through numerous ground experiments with wide ranges of materials and energies

- Insoo Jun, IEEE Transactions on Nuclear Science 2003

MCNP simulation results show good agreement with experiment results

NOVICE Validation: [2/2] Is NOVICE Comparable to MCNP?

TID comparison between MCNP and NOVICE

- MCNPX
- NOVICE 2006, adjoint b=4

Aluminum: 1 ~ 30 g/cm²

Tungsten: $1 \sim 30 \text{ g/cm}^2$

-M. Cherng et al., Nuclear Instruments and Methods in Physics Research 2007

NOVICE results show good agreement with MCNP results

Outline

- Motivation
- Introduction to Transport Tools Evaluated in This Study
- NOVICE Validation Against MCNP
 - Why do you believe that NOVICE is "conservative" when used properly
 - Verification that NOVICE is being used properly

FASTRAD Validation against NOVICE

- Shielding Geometries and Mission Environment
- Simple Geometry (Shell and Box)
- Cylindrical Vault Geometry
- Complex Geometries
- Geant4 Validation against MCNP
 - Forward Monte Carlo Results from Geant4, FASTRAD, and MCNP
- Conclusion

Mission Environment: Radiation Spectrum

Jet Propulsion Laboratory California Institute of Technology

A Jovian Mission

- Intense radiation environment, dominated by trapped electrons
- All fluence spectra are input parameters in Monte Carlo code based tools

Ionizing Dose Depth Curves

Aluminum

Solid Sphere Shielding

- NOVICE adjoint k-option was used for a series of Al shielding thicknesses
- FASTRAD uses NOVICE outputs as inputs in ray tracing analysis

Shield Geometries Used in This Study

1. Material

B-3: Ta

2. Dimension

Length: 10 cm

B-1: Aluminum B-2: Tantalum/Al

Spherical Shell

Cubic Box

• Tantalum (d=16.6 g/cm³)

Aluminum/Tantalum

MCNPX, MCNP6 FMC

FASTRAD 3.8.10

ray tracing, RMC, FMC

NOVICE 2017, adjoint b=8

Geant4, FMC

G4EmLivermorePhysics

G4HadronPhysicsQGSP_BIC_HP

 Point detector for ray tracing analysis

 Volume detector for Monte Carlo analysis

Run errors of all remained less than 5%

C-2

Cylindrical vault

1. Material

C-1: Aluminum

C-2: PCB/Ta/Aluminum

Thickness: $0.05 \sim 30 \text{ g/cm}^2$

C-3: Ta

2. Dimension

Cylinder (RxH)=10cm x30cm Box/slab length= 10cm

Thickness: 0.25 cm

5/13/2019

FASTRAD Validation: [1/2]

Is FASTRAD Conservative?

MCNP vs. NOVICE

B-1

Al Thickness: 0.05 -30 g/cm²

NOVICE vs. FASTRAD

- NOVICE RMC, JPL heritage transport analysis tool, is conservative
- FASTRAD ray tracing over predicts doses in comparison with NOVICE
 - The discrepancy increases when high-Z material is incorporated (due to single material dose depth curves)
 - Shell shielding option shows better agreement with NOVICE for typical shielding thicknesses
- FASTRAD RMC predicts higher TID but the difference remains similar for high-Z shieldings

FASTRAD Validation: [2/2]

Is FASTRAD Too Conservative?

NOVICE vs. FASTRAD

- NOVICE RMC is conservative except high-Z, thick shielding geometry
- FASTRAD ray tracing predicts higher than NOVICE
 - Shell shielding option shows better agreement with NOVICE, especially for aluminum shielding geometry
- FASTRAD RMC predicts higher TID, especially when high-Z element is incorporated

Outline

- Motivation
- Introduction to Transport Tools Evaluated in This Study
- NOVICE Validation Against MCNP
 - Why do you believe that NOVICE is "conservative" when used properly
 - Verification that NOVICE is being used properly

FASTRAD Validation against NOVICE

- Shielding Geometries and Mission Environment
- Simple Geometry (Shell and Box)
- Cylindrical Vault Geometry
- Complex Geometries
- Geant4 Validation against MCNP
 - Forward Monte Carlo Results from Geant4, FASTRAD, and MCNP
- Conclusion

A Jovian Mission Spacecraft Model

Electronics and Instrument CAD Models

-w/ actual materials including high-Z local shields

311 detector points are surveyed for TID

TID Comparison: Complex Geometries [1/2]

- FASTRAD vs. NOVICE

From Deeply Shielded Parts

- FASTRAD ray tracing results with shell dose depth curves (DDC) reported in ERD are conservative within run errors
- FASTRAD ray tracing results for solid sphere DDC with slant path calculation are sometimes lower, sometimes higher, than NOVICE results
- FASTRAD RMC results show better agreement with NOVICE for complex geometry cases except heavily shielded geometry giving-TID less than 20 krad

Total Doses from Actual Geometries [2/2]

-FASTRAD vs. NOVICE

Marginally to Weakly Shielded Parts

- FASTRAD ray tracing method with shell dose depth curves (DDC) predicts doses similar to, or above, NOVICE dose
- FASTRAD ray tracing with solid sphere DDC/slant path option can under-predict doses
- FASTRAD RMC results show better agreement with NOVICE for complex geometry cases

Outline

- Motivation
- Introduction to Transport Tools Evaluated in This Study
- NOVICE Validation Against MCNP
 - Why do you believe that NOVICE is "conservative" when used properly
 - Verification that NOVICE is being used properly
- FASTRAD Validation against NOVICE
 - Shielding Geometries and Mission Environment
 - Simple Geometry (Shell and Box)
 - Cylindrical Vault Geometry
 - Complex Geometries
- Geant4 Validation against MCNP
 - Forward Monte Carlo Results from Geant4, FASTRAD, and MCNP
- Conclusion

TID Comparison Result [1/2] Geant4/FASTRAD_FMC vs. MCNP

- FASTRAD FMC predicts higher TID than MCNP for all geometries
- Geant4 under predicts doses of shells and boxes as thickness increases
- Geant4 under predicts doses of cylinder vaults for all material combinations

Possible Causes of Discrepancies

-Can it be improved?

Cut length

Al Thickness: 3 g/cm²

Energy Spectrum Input Format

- Energy deposition range cut to be optimized for Geant4 runs
 - With shorter cutlength, TID can be increased by ~10% from the used value of 10 um
- Radiation particle spectrum input format change from integral to BIN affects dose significantly
- It can be further improved by using same physics options for both Geant4 and FASTRAD FMC

Conclusion

- MCNP accepted as foundation
- Novice conservative in comparison with MCNP
 - Except high-Z element / thick shielding combination
- FASTRAD ray tracing favorable for preliminary assessment

- FASTRAD Monte Carlo conservative in comparison with NOVICE
- Geant4 can be comparable with MCNP with optimized run parameters
 - Cut-length, radiation spectrum input format, and etc

THANK YOU!

Copyright 2019, California Institute of Technology. Government Sponsorship Acknowledged.

BACKUPs

NOVICE Validation: [3/4]

-Is NOVICE Consistent?

1. Geometry/Material

Aluminum: 1 ~ 30 g/cm²

Tungsten: 1 ~ 30 g/cm²

2. TID Results from Multiple NOVICE version/adjoint

3. Discussion

- Outliers from b=8 adjoint options of 2006 and 2015 are due to double counts of secondary electrons in the final dose and it was discovered through NOVICE new version validation
- JPL's current baseline for Europa Clipper TID analysis is NOVICE 2017 adjoint b=8 option
- JPL works closely with the vendor to validate new revisions, prior to insertion to official transport analysis

